Sorghum extracellular leucine-rich repeat protein SbLRR2 mediates lead tolerance in transgenic Arabidopsis.

نویسندگان

  • Fu-Yuan Zhu
  • Lei Li
  • Pui Ying Lam
  • Mo-Xian Chen
  • Mee-Len Chye
  • Clive Lo
چکیده

A sorghum pathogen-inducible gene predicted to encode a simple extracellular leucine-rich repeat (LRR) protein SbLRR2 was previously isolated. LRR was the only domain identified in SbLRR2 and its homologous sequences. Phylogenetic analysis revealed that they are distinct from the simple extracellular LRR proteins reported previously. Agrobacterium-mediated transient expression in tobacco leaf cells demonstrated that the SbLRR2-EYFP (enhanced yellow fluorescent protein) fusion protein was targeted to the extracellular space. Transgenic analysis of SbLRR2 revealed its role in enhancing lead [Pb(II)] tolerance in Arabidopsis. Consequently, SbLRR2-overexpressing lines were found to show alleviated Pb(II)-induced root inhibition, lower levels of Pb(II) accumulation and enhanced transcription of AtPDR12 which encodes a plasma membrane ATP-bind cassette (ABC)-type transporter formerly shown to contribute to Pb(II) detoxification. However, all the Pb(II) tolerance responses were abolished when SbLRR2 was overexpressed in an atpdr12 T-DNA insertion line. The extracellular localization of SbLRR2 was also shown to be essential for the Pb(II) phenotypes and AtPDR12 up-regulation. Taken together, SbLRR2 appears to mediate Pb(II) tolerance through the elevation of AtPDR12 expression in transgenic Arabidopsis, thus activating a glutathione-independent mechanism for detoxification. Further investigations revealed the Pb(II)-induced transcriptional activation of SbLRR2 and several highly conserved AtPDR12 homologs in sorghum seedlings, suggesting the possibility of a common molecular mechanism for Pb(II) tolerance in diverse plant species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance

Leucine-rich repeats receptor-like kinases (LRR-RLKs) play important roles in plant growth and development as well as stress responses. Here, 56 LRR-RLK genes were identified in the Antarctic moss Pohlia nutans transcriptome, which were further classified into 11 subgroups based on their extracellular domain. Of them, PnLRR-RLK27 belongs to the LRR II subgroup and its expression was significant...

متن کامل

Identification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses

AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...

متن کامل

Wheat Brassinosteroid-Insensitive1 (TaBRI1) Interacts with Members of TaSERK Gene Family and Cause Early Flowering and Seed Yield Enhancement in Arabidopsis

Brassinosteroids (BRs) hormones are important for plant growth, development and immune responses. They are sensed by the transmembrane receptor kinase Brassinosteroid-Insensitive 1 (BRI1) when they bind to its extracellular Leu-rich repeat (LRR) domain. We cloned and characterized the TaBRI1 from T. aestivum and raised overexpression transgenics in Arabidopsis to decipher its functional role. T...

متن کامل

Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES11[W]

Plants perceive microbial invaders using pattern recognition receptors that recognize microbe-associated molecular patterns. In this study, we identified RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 (RBPG1), an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like protein, AtRLP42, that recognizes fungal endopolygalacturonases (PGs) and acts as a novel microbe-associated molecu...

متن کامل

Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein RESPONSIVENESS

Plants perceive microbial invaders using pattern recognition receptors that recognize microbe-associated molecular patterns. In this study, we identified RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 (RBPG1), an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like protein, AtRLP42, that recognizes fungal endopolygalacturonases (PGs) and acts as a novel microbe-associated molecu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 54 9  شماره 

صفحات  -

تاریخ انتشار 2013